Functional Connectivity: The Principal-Component Analysis of Large (PET) Data Sets

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional principal component analysis of fMRI data.

We describe a principal component analysis (PCA) method for functional magnetic resonance imaging (fMRI) data based on functional data analysis, an advanced nonparametric approach. The data delivered by the fMRI scans are viewed as continuous functions of time sampled at the interscan interval and subject to observational noise, and are used accordingly to estimate an image in which smooth func...

متن کامل

An algorithm for the principal component analysis of large data sets

Recently popularized randomized methods for principal component analysis (PCA) efficiently and reliably produce nearly optimal accuracy — even on parallel processors — unlike the classical (deterministic) alternatives. We adapt one of these randomized methods for use with data sets that are too large to be stored in random-access memory (RAM). (The traditional terminology is that our procedure ...

متن کامل

Using Principal Component Analysis (pca) to Obtain Auxiliary Variables for Missing Data in Large Data Sets

......................................................................................................................................... iii Acknowledgement ......................................................................................................................... iv Table of

متن کامل

Principal Component Analysis for Distributed Data Sets with Updating

Identifying the patterns of large data sets is a key requirement in data mining. A powerful technique for this purpose is the principal component analysis (PCA). PCA-based clustering algorithms are effective when the data sets are found in the same location. In applications where the large data sets are physically far apart, moving huge amounts of data to a single location can become an impract...

متن کامل

Fast Principal Component Analysis of Large-Scale Genome-Wide Data

Principal component analysis (PCA) is routinely used to analyze genome-wide single-nucleotide polymorphism (SNP) data, for detecting population structure and potential outliers. However, the size of SNP datasets has increased immensely in recent years and PCA of large datasets has become a time consuming task. We have developed flashpca, a highly efficient PCA implementation based on randomized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Cerebral Blood Flow & Metabolism

سال: 1993

ISSN: 0271-678X,1559-7016

DOI: 10.1038/jcbfm.1993.4